Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 299
Filtrar
1.
J Huntingtons Dis ; 13(1): 91-101, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38517798

RESUMO

Background: Perivascular spaces (PVS) are fluid-filled cavities surrounding small cerebral blood vessels. There are limited reports of enlarged PVS across the grey matter in manifest Huntington's disease (HD). Little is known about how PVS morphometry in the white matter may contribute to HD. Enlarged PVS have the potential to both contribute to HD pathology and affect the distribution and success of intraparenchymal and intrathecally administered huntingtin-lowering therapies. Objective: To investigate PVS morphometry in the global white matter across the spectrum of HD. Relationships between PVS morphometry and disease burden and severity measures were examined. Methods: White matter PVS were segmented on 3T T2 W MRI brain scans of 33 healthy controls, 30 premanifest HD (pre-HD), and 32 early manifest HD (early-HD) participants from the Vancouver site of the TRACK-HD study. PVS count and total PVS volume were measured. Results: PVS total count slightly increased in pre-HD (p = 0.004), and early-HD groups (p = 0.005), compared to healthy controls. PVS volume, as a percentage of white matter volume, increased subtly in pre-HD compared to healthy controls (p = 0.044), but not in early-HD. No associations between PVS measures and HD disease burden or severity were found. Conclusions: This study reveals relatively preserved PVS morphometry across the global white matter of pre-HD and early-HD. Subtle morphometric abnormalities are implied but require confirmation in a larger cohort. However, in conjunction with previous publications, further investigation of PVS in HD and its potential impact on future treatments, with a focus on subcortical grey matter, is warranted.


Assuntos
Doença de Huntington , Substância Branca , Humanos , Doença de Huntington/complicações , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Progressão da Doença , Imageamento por Ressonância Magnética , Substância Cinzenta/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
2.
J Huntingtons Dis ; 13(1): 1-14, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38489195

RESUMO

In this edition of the Huntington's Disease Clinical Trials Update, we expand on the ongoing program from VICO Therapeutics and on the recently terminated VIBRANT-HD clinical trials. We also discuss updates from uniQure's AMT-130 program and PTC therapeutics' trial of PTC518 and list all currently registered and ongoing clinical trials in Huntington's disease.


Assuntos
Doença de Huntington , Humanos , Doença de Huntington/terapia , Ensaios Clínicos como Assunto
3.
J Huntingtons Dis ; 13(1): 77-90, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38489194

RESUMO

Background: The Huntington's Disease Integrated Staging System (HD-ISS) defined disease onset using volumetric cut-offs for caudate and putamen derived from FreeSurfer 6 (FS6). The impact of the latest software update (FS7) on volumes remains unknown. The Huntington's Disease Young Adult Study (HD-YAS) is appropriately positioned to explore differences in FS bias when detecting early atrophy. Objective: Explore the relationships and differences between raw caudate and putamen volumes, calculated total intracranial volumes (cTICV), and adjusted caudate and putamen volumes, derived from FS6 and FS7, in HD-YAS. Methods: Images from 123 participants were segmented and quality controlled. Relationships and differences between volumes were explored using intraclass correlation (ICC) and Bland-Altman analysis. Results: Across the whole cohort, ICC for raw caudate and putamen was 0.99, cTICV 0.93, adjusted caudate 0.87, and adjusted putamen 0.86 (all p < 0.0005). Compared to FS6, FS7 calculated: i) larger raw caudate (+0.8%, p < 0.00005) and putamen (+1.9%, p < 0.00005), with greater difference for larger volumes; and ii) smaller cTICV (-5.1%, p < 0.00005), with greater difference for smaller volumes. The systematic and proportional difference in cTICV was greater than raw volumes. When raw volumes were adjusted for cTICV, these effects compounded (adjusted caudate +7.0%, p < 0.00005; adjusted putamen +8.2%, p < 0.00005), with greater difference for larger volumes. Conclusions: As new software is released, it is critical that biases are explored since differences have the potential to significantly alter the findings of HD trials. Until conversion factors are defined, the HD-ISS must be applied using FS6. This should be incorporated into the HD-ISS online calculator.


Assuntos
Doença de Huntington , Humanos , Adulto Jovem , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/patologia , Núcleo Caudado/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Corpo Estriado , Atrofia/patologia
5.
Mov Disord ; 39(2): 227-234, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38179605

RESUMO

The gene for Huntington's disease (HD) was discovered in 1993, after an international collaborative initiative that led researchers to remote regions of South America. It was the most remarkable milestone, since George Huntington's initial description. Through the phenomenological discussions led by Jean-Martin Charcot and Willian Osler, and finally Americo Negrette's reports, which served as the inspiration for the Venezuela Project led by Nancy Wexler, the journey toward discovering the Huntington's disease (HD) gene was marked by substantial efforts. This monumental achievement involved the analysis of more than 18,000 blood samples and gathered dozens of researchers in an integrated effort, enabling the mapping of the gene on chromosome 4 in 1983 and leading, a decade later, to the precise localization and identification of the HTT gene. The discovery of the HD mutation represented a pivotal moment in the field of genetics and neurology, significantly enhancing our understanding of the disease and creating opportunities for future treatments. The progress made and the knowledge gained during this journey catalyzed the development of many innovative molecular techniques that have advanced research in other medical conditions. In this article, the authors celebrate three decades of this memorable event, revisiting the historical aspects, providing insights into the techniques developed, and delving into the paths that ultimately led to the discovery of the HD gene. © 2024 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Huntington , Transtornos dos Movimentos , Humanos , Doença de Huntington/genética , Doença de Huntington/terapia , Mutação , Estudos de Associação Genética
7.
Lancet Neurol ; 23(3): 243-255, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280392

RESUMO

BACKGROUND: Laquinimod modulates CNS inflammatory pathways thought to be involved in the pathology of Huntington's disease. Studies with laquinimod in transgenic rodent models of Huntington's disease suggested improvements in motor function, reduction of brain volume loss, and prolonged survival. We aimed to evaluate the safety and efficacy of laquinimod in improving motor function and reducing caudate volume loss in patients with Huntington's disease. METHODS: LEGATO-HD was a multicentre, double-blind, placebo-controlled, phase 2 study done at 48 sites across ten countries (Canada, Czech Republic, Germany, Italy, Netherlands, Portugal, Russia, Spain, UK, and USA). Patients aged 21-55 years with a cytosine-adenosine-guanine (CAG) repeat length of between 36 and 49 who had symptomatic Huntington's disease with a Unified Huntington's Disease Rating Scale-Total Motor Score (UHDRS-TMS) of higher than 5 and a Total Functional Capacity score of 8 or higher were randomly assigned (1:1:1:1) by centralised interactive response technology to laquinimod 0·5 mg, 1·0 mg, or 1·5 mg, or to matching placebo, administered orally once daily over 52 weeks; people involved in the randomisation had no other role in the study. Participants, investigators, and study personnel were masked to treatment assignment. The 1·5 mg group was discontinued before recruitment was finished because of cardiovascular safety concerns in multiple sclerosis studies. The primary endpoint was change from baseline in the UHDRS-TMS and the secondary endpoint was percent change in caudate volume, both comparing the 1·0 mg group with the placebo group at week 52. Primary and secondary endpoints were assessed in the full analysis set (ie, all randomised patients who received at least one dose of study drug and had at least one post-baseline UHDRS-TMS assessment). Safety measures included adverse event frequency and severity, and clinical and laboratory examinations, and were assessed in the safety analysis set (ie, all randomised patients who received at least one dose of study drug). This trial is registered with ClinicalTrials.gov, NCT02215616, and EudraCT, 2014-000418-75, and is now complete. FINDINGS: Between Oct 28, 2014, and June 19, 2018, 352 adults with Huntington's disease (179 [51%] men and 173 [49%] women; mean age 43·9 [SD 7·6] years and 340 [97%] White) were randomly assigned: 107 to laquinimod 0·5 mg, 107 to laquinimod 1·0 mg, 30 to laquinimod 1·5 mg, and 108 to matching placebo. Least squares mean change from baseline in UHDRS-TMS at week 52 was 1·98 (SE 0·83) in the laquinimod 1·0 mg group and 1·2 (0·82) in the placebo group (least squares mean difference 0·78 [95% CI -1·42 to 2·98], p=0·4853). Least squares mean change in caudate volume was 3·10% (SE 0·38) in the 1·0 mg group and 4·86% (0·38) in the placebo group (least squares mean difference -1·76% [95% CI -2·67 to -0·85]; p=0·0002). Laquinimod was well tolerated and there were no new safety findings. Serious adverse events were reported by eight (7%) patients on placebo, seven (7%) on laquinimod 0·5 mg, five (5%) on laquinimod 1·0 mg, and one (3%) on laquinimod 1·5 mg. There was one death, which occurred in the placebo group and was unrelated to treatment. The most frequent adverse events in all laquinimod dosed groups (0·5 mg, 1·0 mg, and 1·5 mg) were headache (38 [16%]), diarrhoea (24 [10%]), fall (18 [7%]), nasopharyngitis (20 [8%]), influenza (15 [6%]), vomiting (13 [5%]), arthralgia (11 [5%]), irritability (ten [4%]), fatigue (eight [3%]), and insomnia (eight [3%]). INTERPRETATION: Laquinimod did not show a significant effect on motor symptoms assessed by the UHDRS-TMS, but significantly reduced caudate volume loss compared with placebo at week 52. Huntington's disease has a chronic and slowly progressive course, and this study does not address whether a longer duration of laquinimod treatment could have produced detectable and meaningful changes in the clinical assessments. FUNDING: Teva Pharmaceutical Industries.


Assuntos
Doença de Huntington , Quinolonas , Adulto , Masculino , Humanos , Feminino , Doença de Huntington/tratamento farmacológico , Resultado do Tratamento , Quinolonas/uso terapêutico , Alemanha , Método Duplo-Cego
9.
Cell Rep Med ; 4(12): 101314, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38118416

RESUMO

In a recent study, Wilton and colleagues link activation of the classical complement pathway with corticostriatal synapse loss and cognitive decline in Huntington's disease.1.


Assuntos
Doença de Huntington , Humanos , Sinapses/metabolismo , Cognição
10.
Emerg Top Life Sci ; 7(3): 325-337, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37861103

RESUMO

Repeat expansion disorders (REDs) are monogenic diseases caused by a sequence of repetitive DNA expanding above a pathogenic threshold. A common feature of the REDs is a strong genotype-phenotype correlation in which a major determinant of age at onset (AAO) and disease progression is the length of the inherited repeat tract. Over a disease-gene carrier's life, the length of the repeat can expand in somatic cells, through the process of somatic expansion which is hypothesised to drive disease progression. Despite being monogenic, individual REDs are phenotypically variable, and exploring what genetic modifying factors drive this phenotypic variability has illuminated key pathogenic mechanisms that are common to this group of diseases. Disease phenotypes are affected by the cognate gene in which the expansion is found, the location of the repeat sequence in coding or non-coding regions and by the presence of repeat sequence interruptions. Human genetic data, mouse models and in vitro models have implicated the disease-modifying effect of DNA repair pathways via the mechanisms of somatic mutation of the repeat tract. As such, developing an understanding of these pathways in the context of expanded repeats could lead to future disease-modifying therapies for REDs.


Assuntos
Expansão das Repetições de Trinucleotídeos , Camundongos , Animais , Humanos , Expansão das Repetições de Trinucleotídeos/genética , Idade de Início , Estudos de Associação Genética , Fenótipo , Progressão da Doença
11.
Imaging Neurosci (Camb) ; 1: 1-19, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37719837

RESUMO

Timelines of events, such as symptom appearance or a change in biomarker value, provide powerful signatures that characterise progressive diseases. Understanding and predicting the timing of events is important for clinical trials targeting individuals early in the disease course when putative treatments are likely to have the strongest effect. However, previous models of disease progression cannot estimate the time between events and provide only an ordering in which they change. Here, we introduce the temporal event-based model (TEBM), a new probabilistic model for inferring timelines of biomarker events from sparse and irregularly sampled datasets. We demonstrate the power of the TEBM in two neurodegenerative conditions: Alzheimer's disease (AD) and Huntington's disease (HD). In both diseases, the TEBM not only recapitulates current understanding of event orderings but also provides unique new ranges of timescales between consecutive events. We reproduce and validate these findings using external datasets in both diseases. We also demonstrate that the TEBM improves over current models; provides unique stratification capabilities; and enriches simulated clinical trials to achieve a power of 80% with less than half the cohort size compared with random selection. The application of the TEBM naturally extends to a wide range of progressive conditions.

12.
Brain Commun ; 5(5): fcad214, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744022

RESUMO

Huntington's disease is caused by a CAG repeat expansion in the Huntingtin gene (HTT), coding for polyglutamine in the Huntingtin protein, with longer CAG repeats causing earlier age of onset. The variable 'Age' × ('CAG'-L), where 'Age' is the current age of the individual, 'CAG' is the repeat length and L is a constant (reflecting an approximation of the threshold), termed the 'CAG Age Product' (CAP) enables the consideration of many individuals with different CAG repeat expansions at the same time for analysis of any variable and graphing using the CAG Age Product score as the X axis. Structural MRI studies have showed that progressive striatal atrophy begins many years prior to the onset of diagnosable motor Huntington's disease, confirmed by longitudinal multicentre studies on three continents, including PREDICT-HD, TRACK-HD and IMAGE-HD. However, previous studies have not clarified the relationship between striatal atrophy, atrophy of other basal ganglia structures, and atrophy of other brain regions. The present study has analysed all three longitudinal datasets together using a single image segmentation algorithm and combining data from a large number of subjects across a range of CAG Age Product score. In addition, we have used a strategy of normalizing regional atrophy to atrophy of the whole brain, in order to determine which regions may undergo preferential degeneration. This made possible the detailed characterization of regional brain atrophy in relation to CAG Age Product score. There is dramatic selective atrophy of regions involved in the basal ganglia circuit-caudate, putamen, nucleus accumbens, globus pallidus and substantia nigra. Most other regions of the brain appear to have slower but steady degeneration. These results support (but certainly do not prove) the hypothesis of circuit-based spread of pathology in Huntington's disease, possibly due to spread of mutant Htt protein, though other connection-based mechanisms are possible. Therapeutic targets related to prion-like spread of pathology or other mechanisms may be suggested. In addition, they have implications for current neurosurgical therapeutic approaches, since delivery of therapeutic agents solely to the caudate and putamen may miss other structures affected early, such as nucleus accumbens and output nuclei of the striatum, the substantia nigra and the globus pallidus.

13.
Brain ; 146(11): 4532-4546, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37587097

RESUMO

Cortical cell loss is a core feature of Huntington's disease (HD), beginning many years before clinical motor diagnosis, during the premanifest stage. However, it is unclear how genetic topography relates to cortical cell loss. Here, we explore the biological processes and cell types underlying this relationship and validate these using cell-specific post-mortem data. Eighty premanifest participants on average 15 years from disease onset and 71 controls were included. Using volumetric and diffusion MRI we extracted HD-specific whole brain maps where lower grey matter volume and higher grey matter mean diffusivity, relative to controls, were used as proxies of cortical cell loss. These maps were combined with gene expression data from the Allen Human Brain Atlas (AHBA) to investigate the biological processes relating genetic topography and cortical cell loss. Cortical cell loss was positively correlated with the expression of developmental genes (i.e. higher expression correlated with greater atrophy and increased diffusivity) and negatively correlated with the expression of synaptic and metabolic genes that have been implicated in neurodegeneration. These findings were consistent for diffusion MRI and volumetric HD-specific brain maps. As wild-type huntingtin is known to play a role in neurodevelopment, we explored the association between wild-type huntingtin (HTT) expression and developmental gene expression across the AHBA. Co-expression network analyses in 134 human brains free of neurodegenerative disorders were also performed. HTT expression was correlated with the expression of genes involved in neurodevelopment while co-expression network analyses also revealed that HTT expression was associated with developmental biological processes. Expression weighted cell-type enrichment (EWCE) analyses were used to explore which specific cell types were associated with HD cortical cell loss and these associations were validated using cell specific single nucleus RNAseq (snRNAseq) data from post-mortem HD brains. The developmental transcriptomic profile of cortical cell loss in preHD was enriched in astrocytes and endothelial cells, while the neurodegenerative transcriptomic profile was enriched for neuronal and microglial cells. Astrocyte-specific genes differentially expressed in HD post-mortem brains relative to controls using snRNAseq were enriched in the developmental transcriptomic profile, while neuronal and microglial-specific genes were enriched in the neurodegenerative transcriptomic profile. Our findings suggest that cortical cell loss in preHD may arise from dual pathological processes, emerging as a consequence of neurodevelopmental changes, at the beginning of life, followed by neurodegeneration in adulthood, targeting areas with reduced expression of synaptic and metabolic genes. These events result in age-related cell death across multiple brain cell types.


Assuntos
Doença de Huntington , Humanos , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/genética , Doença de Huntington/metabolismo , Células Endoteliais/metabolismo , Encéfalo/patologia , Substância Cinzenta/patologia , Atrofia/patologia , Imageamento por Ressonância Magnética
14.
J Huntingtons Dis ; 12(2): 169-185, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483021

RESUMO

In this edition of the Huntington's Disease Clinical Trials Corner, we expand on the GENERATION HD2 (tominersen) and on the Asklepios Biopharmaceutical/BrainVectis trial with AB-1001. We also comment on the recent findings from the PROOF-HD trial, and list all currently registered and ongoing clinical trials in Huntington's disease.


Assuntos
Doença de Huntington , Humanos , Doença de Huntington/terapia , Estudos Longitudinais , Oligonucleotídeos
15.
Psychol Med ; 53(5): 1850-1859, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37310334

RESUMO

BACKGROUND: Apathy, a disabling and poorly understood neuropsychiatric symptom, is characterised by impaired self-initiated behaviour. It has been hypothesised that the opportunity cost of time (OCT) may be a key computational variable linking self-initiated behaviour with motivational status. OCT represents the amount of reward which is foregone per second if no action is taken. Using a novel behavioural task and computational modelling, we investigated the relationship between OCT, self-initiation and apathy. We predicted that higher OCT would engender shorter action latencies, and that individuals with greater sensitivity to OCT would have higher behavioural apathy. METHODS: We modulated the OCT in a novel task called the 'Fisherman Game', Participants freely chose when to self-initiate actions to either collect rewards, or on occasion, to complete non-rewarding actions. We measured the relationship between action latencies, OCT and apathy for each participant across two independent non-clinical studies, one under laboratory conditions (n = 21) and one online (n = 90). 'Average-reward' reinforcement learning was used to model our data. We replicated our findings across both studies. RESULTS: We show that the latency of self-initiation is driven by changes in the OCT. Furthermore, we demonstrate, for the first time, that participants with higher apathy showed greater sensitivity to changes in OCT in younger adults. Our model shows that apathetic individuals experienced greatest change in subjective OCT during our task as a consequence of being more sensitive to rewards. CONCLUSIONS: Our results suggest that OCT is an important variable for determining free-operant action initiation and understanding apathy.


Assuntos
Apatia , Adulto , Humanos , Cognição , Simulação por Computador , Motivação , Reforço Psicológico
17.
Brain Commun ; 5(2): fcad084, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020532

RESUMO

Microglia activation, an indicator of central nervous system inflammation, is believed to contribute to the pathology of Huntington's disease. Laquinimod is capable of regulating microglia. By targeting the translocator protein, 11C-PBR28 PET-CT imaging can be used to assess the state of regional gliosis in vivo and explore the effects of laquinimod treatment. This study relates to the LEGATO-HD, multi-centre, double-blinded, Phase 2 clinical trial with laquinimod (US National Registration: NCT02215616). Fifteen patients of the UK LEGATO-HD cohort (mean age: 45.2 ± 7.4 years; disease duration: 5.6 ± 3.0 years) were treated with laquinimod (0.5 mg, N = 4; 1.0 mg, N = 6) or placebo (N = 5) daily. All participants had one 11C-PBR28 PET-CT and one brain MRI scan before laquinimod (or placebo) and at the end of treatment (12 months apart). PET imaging data were quantified to produce 11C-PBR28 distribution volume ratios. These ratios were calculated for the caudate and putamen using the reference Logan plot with the corpus callosum as the reference region. Partial volume effect corrections (Müller-Gartner algorithm) were applied. Differences were sought in Unified Huntington's Disease Rating Scale scores and regional distribution volume ratios between baseline and follow-up and between the two treatment groups (laquinimod versus placebo). No significant change in 11C-PBR28 distribution volume ratios was found post treatment in the caudate and putamen for both those treated with laquinimod (N = 10) and those treated with placebo (N = 5). Over time, the patients treated with laquinimod did not show a significant clinical improvement. Data from the 11C-PBR28 PET-CT study indicate that laquinimod may not have affected regional translocator protein expression and clinical performance over the studied period.

18.
Prog Neurobiol ; 225: 102448, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37023937

RESUMO

Huntington's Disease (HD) is a neurodegenerative disease caused by a polyglutamine (polyQ) expansion in the Huntingtin gene. Astrocyte dysfunction is known to contribute to HD pathology, however our understanding of the molecular pathways involved is limited. Transcriptomic analysis of patient-derived PSC (pluripotent stem cells) astrocyte lines revealed that astrocytes with similar polyQ lengths shared a large number of differentially expressed genes (DEGs). Notably, weighted correlation network analysis (WGCNA) modules from iPSC derived astrocytes showed significant overlap with WGCNA modules from two post-mortem HD cohorts. Further experiments revealed two key elements of astrocyte dysfunction. Firstly, expression of genes linked to astrocyte reactivity, as well as metabolic changes were polyQ length-dependent. Hypermetabolism was observed in shorter polyQ length astrocytes compared to controls, whereas metabolic activity and release of metabolites were significantly reduced in astrocytes with increasing polyQ lengths. Secondly, all HD astrocytes showed increased DNA damage, DNA damage response and upregulation of mismatch repair genes and proteins. Together our study shows for the first time polyQ-dependent phenotypes and functional changes in HD astrocytes providing evidence that increased DNA damage and DNA damage response could contribute to HD astrocyte dysfunction.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Humanos , Astrócitos/metabolismo , Doença de Huntington/genética , Doença de Huntington/patologia , Doenças Neurodegenerativas/metabolismo , Dano ao DNA
19.
J Huntingtons Dis ; 12(1): 57-69, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37092230

RESUMO

BACKGROUND: The Huntington's Disease Integrated Staging System (HD-ISS) has four stages that characterize disease progression. Classification is based on CAG length as a marker of Huntington's disease (Stage 0), striatum atrophy as a biomarker of pathogenesis (Stage 1), motor or cognitive deficits as HD signs and symptoms (Stage 2), and functional decline (Stage 3). One issue for implementation is the possibility that not all variables are measured in every study, and another issue is that the stages are broad and may benefit from progression subgrouping. OBJECTIVE: Impute stages of the HD-ISS for observational studies in which missing data precludes direct stage classification, and then define progression subgroups within stages. METHODS: A machine learning algorithm was used to impute stages. Agreement of the imputed stages with the observed stages was evaluated using graphical methods and propensity score matching. Subgroups were defined based on descriptive statistics and optimal cut-point analysis. RESULTS: There was good overall agreement between the observed stages and the imputed stages, but the algorithm tended to over-assign Stage 0 and under-assign Stage 1 for individuals who were early in progression. CONCLUSION: There is evidence that the imputed stages can be treated similarly to the observed stages for large-scale analyses. When imaging data are not available, imputation can be avoided by collapsing the first two stages using the categories of Stage≤1, Stage 2, and Stage 3. Progression subgroups defined within a stage can help to identify groups of more homogeneous individuals.


Assuntos
Transtornos Cognitivos , Disfunção Cognitiva , Doença de Huntington , Humanos , Biomarcadores , Progressão da Doença
20.
Brain Behav ; 13(4): e2940, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36917716

RESUMO

BACKGROUND: Whole-brain longitudinal diffusion studies are crucial to examine changes in structural connectivity in neurodegeneration. Here, we investigated the longitudinal alterations in white matter (WM) microstructure across the timecourse of Huntington's disease (HD). METHODS: We examined changes in WM microstructure from premanifest to early manifest disease, using data from two cohorts with different disease burden. The TrackOn-HD study included 67 controls, 67 premanifest, and 10 early manifest HD (baseline and 24-month data); the PADDINGTON study included 33 controls and 49 early manifest HD (baseline and 15-month data). Longitudinal changes in fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity, and radial diffusivity from baseline to last study visit were investigated for each cohort using tract-based spatial statistics. An optimized pipeline was employed to generate participant-specific templates to which diffusion tensor imaging maps were registered and change maps were calculated. We examined longitudinal differences between HD expansion-carriers and controls, and correlations with clinical scores, including the composite UHDRS (cUHDRS). RESULTS: HD expansion-carriers from TrackOn-HD, with lower disease burden, showed a significant longitudinal decline in FA in the left superior longitudinal fasciculus and an increase in MD across subcortical WM tracts compared to controls, while in manifest HD participants from PADDINGTON, there were significant widespread longitudinal increases in diffusivity compared to controls. Baseline scores in clinical scales including the cUHDRS predicted WM microstructural change in HD expansion-carriers. CONCLUSION: The present study showed significant longitudinal changes in WM microstructure across the HD timecourse. Changes were evident in larger WM areas and across more metrics as the disease advanced, suggesting a progressive alteration of WM microstructure with disease evolution.


Assuntos
Doença de Huntington , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Doença de Huntington/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...